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Abstract 

Schizophrenia is a serious and often devastating disease, affecting approximately 1% of worldwide 

population. Animal models represent a suitable way for investigating serious brain diseases in preclinical 

research. Animal models of schizophrenia can be generally divided into several categories that include 

pharmacological, genetic and neurodevelopmental models. Pharmacological models are usually based on 

application of specific receptor ligands for neurotransmitters. Genetic models are created by genetic 

manipulations (mutations; often in laboratory mice). Neurodevelopmental models are induced by 

manipulations in early stages of life of the laboratory animal. They are manifested later in juvenile or adult age 

by phenotypes that are similar to schizophrenia symptoms. This review summarizes and discusses 

pharmacological models of schizophrenia based on application of NMDA receptor antagonists; furthermore, the 

study focuses on selected genetic and neurodevelopmental models. 
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Schizophrenia is a serious, complex and devastating mental disease that affects about 1% of the 

worldwide population (Sartorius et al., 1986). It usually manifests in late adolescence, generally earlier in men 

than in women (Castle et al., 1998). Many patients show deficits in areas such as social behavior (Allen et al., 

2005), intellectual abilities (Amminger et al., 2000) and motor functions (Rosso et al., 2000). The symptoms of 

schizophrenia can be divided into positive (hallucinations, delusions, thought disorders), negative (disorder in 

social interactions, motivation, disorder of natural speech, anhedonia) and cognitive impairment which 

includes difficulties with attention, working memory, visual retrieval and intelligence (Andreasen, 1995). 

 Modeling human neuropsychiatric diseases such as schizophrenia is difficult partly because of the 

complexity of the disease but mainly because the psychological states typical for human diseases are hard to 

observe in animals or are not accessible at all. Therefore, researchers often focus on changes in behavior or 

cerebral physiology or try to derive analogies that with a certain degree of simplification reflect the clinical 

symptoms in patients. Currently, there is no animal model that would encompass all the features and symptoms 

of schizophrenia. However, a series of pharmacological neurodevelopmental and genetic models that mimic 

certain states of the disease and are used for developing potential antipsychotic medication have been 

developed (Jones et al, 2011). The most common animal models are the rodents, but primates such as 

capuchins (Shiigi and Casey, 1999), squirrel monkeys (Boyce et al., 1991) or vervets (Ridley et al., 1982) can 

also be used. The interesting fact is that some pharmacological models that used blockers of N-methyl-D-

aspartate (NMDA) receptors were tested even in aquarium fish, namely in zebrafish (Danio rerio) (Seibt et al., 

2011). 

 All animal models should have adequate validity. The validity should be phenomenological, which 

specifies to what extent the changes in behavior in an animal are similar to changes in a human, constructive, 
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which reflects the theoretical and neurobiological findings and pathology, and predictive, which show the 

expected pharmacological response to the treatment, that is used in clinical practice (Jones et al., 2011). In the 

following text a brief overview of the most common models will be provided. 

Pharmacological animal models 

 Pharmacological models are based on acute or chronic application of substances modulating the 

neurotransmitter (receptor) systems. Among the most used belong e. g. the dopamine agonists such as 

amphetamine (Ellison et al., 1981) or apomorphine (Swerdlow and Geyer, 1993), selective agonists of serotonin 

receptors such as 8-OH-DPAT (Arvidsson et al., 1981), selective antagonists of serotonin receptors including 

also (S)-WAY 100135 (Cliffe et al., 1993), WAY- 100635 (Mathis et al., 1994) or M100907 (Schimdt et al., 1992), 

or antagonists of NMDA receptors such as phencyclidine (PCP) (Noda et al., 1995), ketamine (Krystal et al., 

1994), MK-801 (Andino et al., 1999) and D-AP5 (Hauber and Schimdt, 1989). This paper will henceforward 

focus on glutamatergic animal models of schizophrenia. 

Glutamatergic models 

 Glutamatergic hypothesis of schizophrenia posits that the endogenous dysfunction of 

neurotransmission mediated by NMDA receptors may contribute to the pathogenesis of schizophrenia. It is 

believed that low doses of PCP and ketamine selectively and non-competitively block NMDA receptors so that 

they bind to a site in the ion pore that is associated with these receptors (Javitt and Zukin, 1991). As mentioned 

before, the psychopharmacological studies in humans (Krystal et al., 1994) and behavioral studies in laboratory 

animals (Koek et al., 1988) suggest that the antagonists of NMDA receptors induce schizophrenia-like 

symptoms (Javitt and Zukin, 1991) on which the model is based. Ketamine (Swerdlow et al., 1998), PCP and 

MK-801 reduce the prepulse inhibition in laboratory animals (Mansbach and Geyer, 1989); furthermore, the 

antagonists of NMDA receptors affect also certain aspects of sensory processing (Sillito et al., 1990). 

Ketamine 

 Ketamine is a dissociative anesthetic that was synthesized in 1962. During its administration in healthy 

volunteers in subanesthetic doses, short-term and temporary changes in behavior that are similar to positive, 

negative and even to cognitive symptoms of schizophrenia occur (Adler et al., 1999; Krystal et al. 1994). 

Ketamine also worsens the psychotic symptoms in schizophrenia patients (Lahti et al., 1995). In healthy 

subjects, psychotomimetic effects are significantly reduced by clozapine, the atypical antipsychotic. However, 

the effects are not blocked by conventional antipsychotics of older generation (Malhotra et al., 1997). In 

rodents, ketamine disrupts the prepulse inhibition (Swerdlow et al., 1998) and causes locomotor hyperactivity 

(Hetzler and Wautlet, 1985). On the contrary, one of the studies found a decrease in locomotor activity after 

ketamine administration in monkeys (Shiigi and Casey, 1999). Usefulness of the model with subchronic 

application of subanesthetic doses of ketamine was confirmed by Becker and his colleagues in their experiment. 

They found decreased binding of [3H]L-glutamate on glutamate receptors in frontal cortex and increased binding of 

[3H]L-spiroperidol on D2 receptor in hippocampus in brown rats that were administered with ketamine. 

Ketamine in low doses (10, 20, and 30 mg/kg) increases glutamate release in the prefrontal cortex (PFC), 

thereby it stimulates the postsynaptic non-NMDA receptors. This causes disruption of dopaminergic 

neurotransmission in PFC and in cognitive functions that are associated with this area. The same study found 

that ketamine has biphasic effect on the flow of glutamate in PFC. Low subanesthetic doses (30 mg/kg) increase 

the glutamate levels in PFC, whereas the anesthetic doses (200 mg/kg) reduce these levels (Moghaddam et al., 

1997). In addition, the clinical studies have shown that subanesthetic doses of ketamine induce cognitive 

deficits in tasks that are dependent on PFC (Ghoneim et al., 1985) such as delayed verbal recall from memory 
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tests (Krystal et al., 1994). It is also important to mention that subanesthetic doses of ketamine induce rapid 

antidepressant effect which persists for a matter of days to weeks (Berman et al., 2000). 

Phencyclidine 

 Phencyclidine is a noncompetitive antagonist of NMDA receptors which has a relatively high affinity for 

the D2 and 5-HT2 receptors (Kapur and Seeman, 2002). In humans, it induces a syndrome which seemingly 

resembles schizophrenia and which comprises both its positive and negative symptoms (Javitt and Zukin, 

1991). In rodents, it primarily causes stereotyped behavior (Sams-Dodd, 1996), social withdrawal (Corbett et 

al., 1995), hyperactivity (Kalinichev et al., 2008) and it also disrupts prepulse inhibition (Mansbach and Geyer, 

1989) and recognition memory (Egerton et al., 2005). In monkeys, the acute doses of PCP induce deficits in 

spatial (Boyce et al., 1991) and working memory (Baron and Wenger, 2001) and also in prepulse inhibition 

(Lynn and Javitt, 2001). Permanent cognitive deficit induced by sub-chronic PCP doses can be attenuated by 

atypical antipsychotics such as ziprasidone (a dose of 2.5 mg/kg), onlanzapine (a dose of 1.5 mg/kg) and 

clozapine (a dose of 5 mg/kg) (Abudl-Monim et al., 2006). The classical antipsychotics such as haloperidol 

(Abdul-Monim et al., 2003) and chlorpromazine have no effect on the deficit (Abdul-Monim et al., 2006). 

Dizocilpine (MK-801) 

 Dizocilpine (MK-801) that was synthesized in 1982 is a phencyclidine-like substance. MK-801 induces 

hyperlocomotion and impairs cognitive functions. Unfortunately, there is only a small range of doses that can be 

applied in order to avoid overdosing. It then leads to neurotoxic effects (Olney et al., 1989). In rodents, 

subchronic exposure to high doses (≥10 mg/kg) induces cell death and neurodegeneration e.g. in olfactory 

bulbs, dentate gyrus and entorhinal cortex (so called Olney’s lesions) (Bender et al., 2010). Likewise PCP, MK-

801 also creates a spectrum of motor dysfunctions such as hyperactivity, stereotypy, cognitive deficit or ataxia 

(Koek et al., 1988) in various species including pigeons, rhesus monkeys and rodents. 

 In rats the systemic administration of MK-801 causes deterioration in various learning and memory 

processes, e.g. in passive place avoidance tasks (Ohno and Watanabe, 1996) or in spatial orientation tasks in 

radial maze (Pitkänen et al., 1995) and in water maze (Whishaw and Auer, 1989). One of the studies found that 

after MK-801 administration rats find the hidden platform in Morris water maze more slowly than control 

animals and that they exhibited increased thigmotaxis (they stay closer to the walls of the maze) (Lukoyanov 

and Paula-Barbosa, 2000). The results of another experiment showed that even a single dose of MK-801 (4 

mg/kg) is capable of inducing changes in spatial learning in rats in Morris water maze. These changes subside 

within five days (Whishaw and Auer, 1989). Furthermore, it was found that the effects of systemic 

administration of MK-801 on spatial learning in the water maze are extremely difficult to separate from motor 

and sensory disorders (Ahlander et al., 1999). The results of another study show that when MK-801 is 

administered to naïve rats that are unfamiliar with the rules of spatial alternation task on rotating arena the 

working memory worsens and the efficiency of performance in this task is disrupted. However, in animals that 

undergo a pre-training before MK-801 administration (a dose of 0.12 mg/kg and 0.15 mg/kg) this deficit does 

not appear (Zemanova et al., 2013). Results of a different study showed that only the highest doses (0.2 mg/kg) 

of systemically administered dizocilpine induce significant deficit in active place avoidance task learning, while 

lower doses of MK-801 (0.1 mg/kg) do not affect performance in this task (Stuchlik et al., 2004). Another study 

found that even 0.15 mg/kg of MK-801 impairs spatial working memory in rodents which, when combined with 

other findings, suggests that NMDA receptors play a role rather in long-term storage of spatial information 

(White and Best, 1998). There is a number of studies that connect learning and memory with MK-801 animal 

model of schizophrenia. One of the studies tested the effect of MK-801 on behavioral (cognitive) flexibility in 

active place avoidance task and in Morris water maze tasks (MWM) in rats. It turned out that in this 
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schizophrenic behavior model the cognitive flexibility is impaired and that the active place avoidance task is 

more sensitive to this deficit (in this task the deficit was present already at the dose of 0.08 mg/kg) (Lobellova 

et al., 2013). Behavioral flexibility is the ability to adapt to the changes in close environment. In schizophrenia 

patients, this ability is often reduced which, among other things, proved the results of the patients suffering 

from schizophrenia in virtual decision-making tasks (Han et al., 2012). Changes in attention, behavioral 

flexibility and adaptation to the new conditions were also observed in animal models of schizophrenia in 

different experiments, e.g. after exposure to NMDA receptors in attention task (Amitai and Markou, 2010). 

 Mice in which an animal model of psychosis using MK-801 was induced replaced the components of 

behavior such as sniffing or pawing by monotonous locomotion. This fact corresponds to the positive symptoms 

in schizophrenia (stereotypy) and it is associated with excessive dopaminergic activity in the mesolimbic areas 

(Nilsson et al., 2001). The authors described the changes as overall behavioral primitivization (Nilsson et al., 

2001). There is a difference is sensitivity to MK-801 between the sexes: the female rats are more sensitive to 

this substance probably due to the fact that MK-801 is metabolized in liver and females have lower efficiency of 

metabolic system (Andino et al., 1999). For the same reason, the females are more sensitive to PCP which leads 

to its higher concentration in plasma and brain (Nabeshima et al., 1984). It was proved that female rats show 4 

to 10 times stronger behavior induced by MK-801 and up to 25 times greater serum and brain concentration of 

MK-801 than male rats (Andino et al., 1999). 

 In terms of molecular changes, one study found that MK-801 modifies the expression of NR1 splice 

variants and NR2 subunits of NMDA (Rujescu et al., 2006) in a similar manner that was observed in 

schizophrenia (Gao et al., 2000). The study also noted relatively decreased amount of GABAeric parvalbumin-

positive interneurons (Rujescu et al., 2006) which is parallel to the changes that were observed in the brains of 

patients suffering from schizophrenia (Zhang and Reynolds, 2002). In rats, the chronic exposure to MK-801 

leads to increased quantity of intracellular glutamate in hippocampus, while in the extra-hippocampal regions 

no change in concentration was observed (Genius et al., 2013). 

 It was found that the administration of 5-HT2A/2C receptor antagonists such as ritanserin and 

risperidone (which is also the D2 receptor antagonist) blocks the cognitive impairments induced by MK-801, 

while haloperidol, the D2 receptor antagonist, is not able to sufficiently correct the deficit in active place 

avoidance task in Carousel Maze (formerly known as Active Alothetic Place Avoidance, AAPA). This deficit is 

induced by MK-801 administration but it effectively blocks hyperlocomotion (Bubenikova-Valešova et al., 

2008). Interestingly, after administration of risperidone and haloperidol in intact rats an impaired performance 

in AAPA could be observed. However, this performance impairment did not occur after ritanserin 

administration (Bubenikova-Valešova et al., 2008). It turned out that neuroleptics (the antipsychotic agents 

used for clinical purposes) antagonize behavior induced by MK-801 (Tiedtke et al., 1990) as well as PCP 

(Sturgeon et al., 1981). This indicates that the behavior induced by NMDA receptor antagonists can be used as 

complementary model of psychosis in search of new and more effective antipsychotic in schizophrenia 

treatment. 

Neurodevelopmental animal models 

 Neurodevelopmental animal models are based on neurodevelopmental hypothesis of the emergence of 

schizophrenia. This hypothesis supposes that a disruption in prenatal or perinatal period of brain development 

causes dysfunctions of brain connectivity that are manifested by schizophrenia outbreak in early adulthood. 

This hypothesis is confirmed by e.g. studies aimed at inhibition of NMDA receptors that show that exposure to 

MK-801 (Harris et al., 2003) and PCP in late fetal or early postnatal period in rats increases the risk of brain 
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damage (Wang et al., 2001). Chronic blockade of NMDA receptors by both MK-801 (Gorter and Bruin, 1992) and 

PCP during this period causes cognitive deficit and impairs spatial memory in adulthood (Sircar and Rudy, 

1998). The time when the inhibition of NMDA receptors increases the cell damage correlates with maximal 

expression of these receptors. In humans, this period corresponds to the third semester of pregnancy (Lee and 

Choi, 1992), in rats to the first two weeks of postnatal life (Colwell et al., 1998). Neurodegenerative changes 

caused by hypofunction of NMDA receptors may serve as models for pharmacotherapy of schizophrenia 

research (Olney and Farber, 1995). 

 To the neurodevelopmental models belong also the malnutrition models that address the issue of 

prenatal malnutrition on brain development (Llorente et al., 2007), models of viral infections (Takei et al., 

1995), stress during pregnancy (Fride and Weinstock, 1988), neonatal brain lesions (Lipska and Weinberger, 

1993) and other neuronal damages such as postnatal hypoxia after which changes in gene expression of NMDA 

receptor subunits and reduced prepulse inhibition were observed (Schmitt et al., 2007). 

 To create a structural model of psychosis in animals the neonatal hippocampal lesions (Lipska and 

Weinberger, 1993) or medial prefrontal cortex lesions (Jaskiw et al., 1990) are used. The best described 

neurodevelopmental animal model of psychosis was designed by Lipska and Weinberger. The model consists in 

performing neonatal excitotoxic ventral hippocampal lesion (Lipska and Weinberger, 1993; 1995). After 

amphetamine application, this lesion causes changes in behavior such as hyperlokomotion (Lipska and 

Weinberger, 1993). Experimental manipulations with ventral hippocampal lesions are in rats performed on the 

seventh postnatal day and they result in both temporary (Lipska et al., 2002b) and permanent (Lipska et al, 

1993) inactivation of the ventral hippocampus. As a result of these manipulations, hyperactivity (Lipska et al., 

2022b), changes in gene expression (Lillrand et al., 1996), deficits in working memory (Lipska et al., 2002b) and 

impaired prepulse inhibition (Daenen et al., 2003) can be observed in adult rats. It turned out that even 

temporary inactivation of ventral hippocampus during critical period can trigger behavioral changes similar to 

those that can be observed in animals with permanent excitotoxic lesions. Since the neonatal disconnection of 

ventral hippocampus changes the PFC development and plasticity and creates cellular changes that mimic the 

symptoms of schizophrenia it can represent a potential new model for studying schizophrenia (Lipska, 2004). 

Selected genetic animal models 

 Genetic animal models of schizophrenia slowly displace pharmacological and neurodevelopmental 

models. The main advantage of these models is the fact that they have potentially grated construct validity 

(Harrison et al., 2012). There is a wide variety of genes that are, as expected, involved in the pathophysiology of 

schizophrenia and that can be explored. It is worth mentioning that a number of genetic manipulations aimed at 

variety of genes are presented as schizophrenia endophenotypes, i.e. isolatable phenotypic characteristics that 

are bound to a disease, frequently hereditary and often present in healthy blood relatives of these subjects (e.g. 

Willi et al., 2010). 

 One of the genes that is associated with schizophrenia is NRG1 (Neuregulin 1) located at chromosome 

8p13 (in humans). 30cM region around 8p21.1-22 on the chromosome 8p is considered a locus comprising of 

one or more genes that are co-responsible for the onset of schizophrenia (Pulver at al., 1995). Neuregulins 

represent a family of growth and differentiation factors encoded by four different genes (NRG-1 to NRG-4) that 

are bound to ErbB family of tyrosine kinase transmembrane receptors (Papaleo et al., 2012). NRG1 modulates 

neuronal precursors and cell migration using radial glial cells (Schmid et al., 2003) and increases neuronal 

survival (Vaskovsky et al., 2000). One of the studies showed that heterozygous mice for NRG-1 receptor of 

ErbB4 exhibit similar abnormalities in behavior as patients suffering from schizophrenia – e.g. hyperactivity 
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(Gerlai et al., 2000) and that these changes can be partially reversed by clozapine (Stefansson et al., 2002). 

Recently, the possibility that NRG1 path may be interconnected with NMDA receptors is being considered. The 

connecting link between these two systems is the fact that ErbB4 receptor is bound to a postsynaptic scaffold 

protein PSD-95 (Huang et al., 2000) which interacts with NMDA receptors (Kornau et al., 1995). 

 In vitro stimulation of NRG1 was able to suppress the currents in prefrontal pyramidal neurons induced 

by NMDA receptors (Gu et al., 2005). Also, the activation of NMDA receptors in prefrontal cortex was 

significantly suppressed in patients with schizophrenia that exhibited a greater degree of Erb4 – PSD-95 

signaling compared to healthy individuals. It follows that more intensive NRG1 signaling may contribute to the 

hypofunction of NMDA receptors (Hahn et al., 2006). An experiment investigating the short- and long-term 

effects of chronic blockade of NMDA receptors in the interaction between prefrontal cortex and hippocampus 

was carried out. 24 hours after the last injection of MK-801 the interactions of ErbB4, PSD-95 and NMDA 

receptors in PFC were increased. However, 12 days after the last dose these effects were not visible, indicating 

the reversibility of these changes. These results suggest that NRG-ErbB4 signaling may be modulated by 

repeated blockage of NMDA receptors and provide further evidence of interconnection of these two signaling 

pathways (Li et al., 2013). 

 Another possibility for the research is the genetic modification of the NMDA receptors themselves. The 

receptors are composed of a number of NR1, NR2A-D, NR3A-B subunits (Dingledine et al., 1999). An example of 

genetic animal model for NMDA receptor hypofunction is the NMDA receptor hypomorphic mouse that has 

significantly reduced the NR1 subunit (Mohn et al., 1999). These mice exhibit reduced motor activity, deficits in 

social interactions (Mohn et al., 1999), decreased metabolic activity in the medial prefrontal cortex and 

hippocampus (Duncan et al., 2002) and prepulse inhibition deficits of an acoustic startle response (Duncan et 

al., 2004). It was found that clozapine and haloperidol mitigate prepulse inhibition deficits in NR1 hypomorphic 

mice (Duncan et al., 2006a) and olanzapine reduces their locomotor hyperactivity (Duncan et al., 2006b). The 

significance of this model for schizophrenia is being challenged because the evidence for abnormalities in genes 

that cause expression of the NMDA receptor subunits has not been found yet (Nishiguchi et al., 2000). In 

addition, these animals showed response neither to PCP nor to MK-801 which is contrary to the conclusions 

that have been found in schizophrenia patients (Krystal et al., 1994). Furthermore, two lines of mouse animal 

model with a point mutation of glycine binding site on NR1 subunit were created: Grin1 (D481N) and Grin1 

(K483Q). The second phenotype confirmed the essential role of NMDA receptor activation in neonatal survival 

(Kew et al., 2000). The Grin 1D481N/K483Q heterozygous mice exhibited NMDA receptor hypofunction, 

hyperlocomotion, stereotyped behavior and impaired performance in finding visible platform task in Morris 

water maze (Ballard et al., 2002). Except that, the NR2 subunit (GluRepsilon1) can also be eliminated. In these 

mice, NMDA receptors are malfunctioning and mice exhibit hyperlocomotion again (Miyamoto et al., 2001). 

Conclusion 

 The aim of this study was to summarize the findings of hypoglutamatergic animal models of 

schizophrenia-like behavior. The main reason for this was the fact that the neurodevelopmental hypothesis of 

glutamate NMDA receptors hypofunction has been recently gaining interest. Currently, the non-competitive 

antagonists of NMDA receptors such as ketamine, phencyclidine and MK-801 are used for schizophrenia-like 

behavior modeling in animals. These models have a great potential even though they do not reflect all the 

symptoms of schizophrenia. These non-competitive antagonists bind to a site on the NMDA receptor ion 

channel; thereby they block and disrupt their proper functions. Chronic blockade of NMDA receptors can also 

be caused by application of NMDA receptor non-competitive antagonists in late fetal or early postnatal period. 

This results in poor brain development and onset of schizophrenia-like behavior in adult animals. In animal 
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models, these antagonists induce a broad spectrum of symptoms relevant to schizophrenia such as locomotor 

hyperactivity, stereotyped behavior, impaired recognition, and ataxia, deficits in spatial and working memory, 

reduced prepulse inhibition, changes in glutamate release, and also social withdrawal which is induced by low 

doses of MK-801. Another promising option that allows researches dealing with NMDA receptors responsibility 

for the onset of schizophrenia is creating genetically modified animals which exhibit similar behavioral and 

pharmacological changes as patients suffering from schizophrenia. The contribution of these animal models to 

schizophrenia research is undeniable; however, knowledge about the origin, etiology and neuropathology of the 

disease still remains scarce, since due to its complexity a single “ideal” and “universal” animal model that would 

contain all the symptoms cannot be created. Models can however mimic several important aspects and 

symptoms of schizophrenia. This fact is also important in finding a safer and more effective medication for the 

disease. 
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